オゾン層(オゾンそう)とは地球の大気中でオゾンの濃度が高い部分のことである。オゾンは、地上から約20~50kmほどの成層圏に多く存在し、特に地上20~25kmの高さで最も密度が高くなる。
オゾンの発生[]
成層圏中では、太陽からの242nm以下の波長の紫外線を吸収して酸素分子が光解離し酸素原子になる。この酸素原子が酸素分子と結びついてオゾンとなる。また生成したオゾンは320nm以下の波長を持つ紫外線を吸収し、酸素分子と酸素原子に分解するという反応も同時に進行する(反応式のMは主に窒素や酸素の分子で、反応のエネルギーを受け取る役割をしている)。各反応素過程は次のように示される。とは光(太陽からの紫外線)のエネルギーを表している。
オゾン生成のプロセス[]
この反応のメカニズムは1930年にチャップマンによって考え出され、チャップマン機構と呼ばれる。大気中のオゾンは、その90%以上が成層圏に存在し、オゾン層では濃度は2~8ppmと、地表に比べれば非常に高い。
オゾンは主に、赤道上の熱帯成層圏下部で最も活発に生成されている。生成されたオゾンはブリューワ・ドブソン循環によって高緯度の成層圏に運ばれるので、極域の方が熱帯地方よりもオゾンが多くなる。ところが、近年、冷媒等に使われるフロンを起源とする活性化した塩素原子がオゾンを分解し減少させてしまう事が問題となっている(下記記述)。
オゾン層と紫外線[]
オゾン層は、太陽からの有害な紫外線の多くを吸収し、地上の生態系を保護する役割を果たしている。
紫外線は波長によってUV-A、UV-B、UV-Cに分類される。最も波長が短く有害なUV-Cはオゾン層によって完全に吸収され、地表に届くことはない。UV-AとUV-Cの中間の波長を持つUV-Bは、そのほとんどがオゾン層によって吸収されるが、その一部は地表に到達し、皮膚の炎症や皮膚がんの原因となる。最も波長の長いUV-Aは、大半が吸収されずに地表に到達するが、有害性はUV-Bよりも小さい。UV-Aは、しわやたるみの原因になる。
「紫外線」も参照
オゾン層の破壊[]
オゾンはヒドロキシラジカル、一酸化窒素、塩素原子などの存在によって分解される。これらは成層圏で自然にも発生するものであり、オゾンの生成と分解のバランスが保たれてきた。
しかし冷蔵庫、クーラーなどの冷媒や、プリント基板の洗浄剤として使用されてきたフロンなどの塩素を含む化学物質が大気中に排出されたことで、成層圏で塩素原子が増加し、オゾン層の破壊が進んだ。フロンは非常に安定な物質であるため、ほとんど分解されないまま成層圏に達し、太陽からの紫外線によって分解され、オゾンを分解する働きを持つ塩素原子ができる。
成層圏における、塩素原子による触媒反応系はダイマー駆動機構(dimer-driven mechanism)と呼ばれ、その反応素過程は次のように示される。
オゾン分解のプロセス[]
正味:
この塩素原子は、たった1つでオゾン分子約10万個を連鎖的に分解していく。こうした原因からオゾンホールと呼ばれるオゾン濃度が極端に薄くなった部分が出来た。南極上空では、オゾンホールが毎年9~10月に現れることが知られている。
オゾン層の現状[]
このままオゾン層が破壊され地表に有害な紫外線が増えると、皮膚がんや結膜炎などが増加すると考えられている。気象庁の観測によると、日本上空においても、オゾンの減少傾向が確認されている。しかし近年になってフロンガスの全世界的な使用規制が功を奏したとみられ、オゾンは徐々にではあるが再生されつつあり、ほぼ問題は解決された。
なお、「これまでに放出されたフロンが成層圏に届くまでには数十年かかるので、オゾン層破壊はこれから更に進行する」というのは俗説である。実際、対流圏でフロン濃度が最大になってから成層圏でフロン濃度が最大になるまでに要する時間は、3~4年程度である。
一方、最近の研究によると、温度が低くなるとオゾン層も減ってくるという説が提案されており、季節変動やQBO、南極振動などの太陽活動に誘起されたテレコネクションによる南極の寒冷化がオゾンホールの主な原因ではないかと指摘する報告があがってきている[1][2][3]。
成層圏では逆にオゾン層の希薄化に伴う光化学反応の減少と思われる気温の低下が報告されており、その代わりに対流圏付近で光化学反応が行われ気温が上昇する事が考えられる。
オゾン層に関する近年の動き・フロン規制以後[]
- オゾンホールは2050年頃にふさがる
- 西日本新聞と日本経済新聞、読売新聞の記事によると、20世紀末に拡大し続けていた南極上空のオゾンホールは2050年頃に消失するとの予測結果を、国立環境研究所の秋吉英治主任研究員らのグループが発表したと報じている(2006年5月20日)。国立環境研究所の記者発表(PDF)[4]によると、今後しばらくは大規模なオゾンホールが残るものの、2020年頃からオゾンホールが縮小し始め、2050年頃には1980年レベルまで回復されるという結果が得られたとのこと。今の規制の中で2050年頃にオゾンホール消滅の期待が持てるものの、同時に今後数十年間に渡ってオゾンホールの大きい状態が続くという予測結果が出ている。またフロンなどがモデルの想定以上使用された場合には、オゾンホールの回復は更に遅れるともPDF内で述べられている。
- フロンガス規制が効果を発揮 - オゾン層が回復中
- フロンガスなどの排出規制の効果で、破壊が進んでいたオゾン層は1997年を境に回復傾向にあることが分かった(2006年8月31日)。フロンガス排出規制の効果で、破壊が進んでいたオゾン層は1997年をピークに回復傾向にあるという研究報告が、8月20日に発表された。[5]この研究は、米ジョージア工科大学の研究チームが米航空宇宙局(NASA)と米国海洋大気庁(NOAA)のデータに基づき行ったもの。地球の成層圏内のオゾンの量について、気球や地上に設置された機器、NASAやNOAAの衛星などから得られた25年分の観察結果を分析した。今回の研究報告によると、北極/南極上空の成層圏内のオゾンは、1979年から1997年にかけて減少が続いていたが、1997年を境に増加傾向にあるという。オゾン量の増加のうちの約半分は、成層圏上部(地表から11マイル以上)で観察されている。オゾン量の変化には、太陽の黒点周期や季節要因、成層圏内の風向きなど様々な要因が考えられるものの、この成層圏上部のオゾン量の増加は、ほぼ完全にフロンガスなどの排出規制の効果によるものだという。オゾン層破壊の人体への悪影響が最初に認識され始めたのは1980年。このレベルまでオゾンの量が回復するのは、今世紀半ばごろになる見込みだという。
- 南極上空のオゾンホールが過去最大に
- NASAなどによると、南極上空のオゾンホールが過去最大になる見込み[6]。 南半球の冬期に、南極上空の気温が例年よりも低かったことが原因。これから夏に向かう南半球では、紫外線の量が例年以上になりそうだという(2006年10月21日)。米航空宇宙局(NASA)と米国海洋大気庁(NOAA)は10月19日、南極上空のオゾンホールが拡大し、9月下旬には過去最大となったと発表した。オゾンは、太陽からの有害な紫外線の多くを吸収し、地上の生態系を保護する役割を果たしているとされている。特に北極・南極上空を中心に、1979年以降減少傾向にあったが、フロンガス排出規制の効果もあり、1997年を境に増加傾向にある、とNASAとNOAAは8月に報告していた。今回報告された南極上空のオゾンホール拡大には、成層圏の気温が関係しているという。NOAAのデータによると、2006年9月後半の南極上空の成層圏の気温が、華氏で約9度、平均よりも低かったという。この時期のオゾンホールの大きさは、890万~930万平方マイル(北米大陸ほどの大きさ)から、1,060万平方マイルほどに拡大していた。対流圏および成層圏のフロンガス量は減少傾向にあるが、40年以上も大気の中に留まるため、南極地域上空での成層圏内のフロンガスの減少は、今後5~10年の間は年0.1~0.2%程度にすぎないという。このため年によっては、南極上空の気温変動の影響が、ガス減少の効果を上回ってしまうことがあるという。
- 2008年時点での最新状況・気象庁「オゾン層観測報告:2007」[7]
- 気象庁の最新データ・「オゾン層観測報告:2007」/2008/04/23によると、オゾンホールが注目された1980年代を中心にオゾン量の減少が進み現在も少ない状況が継続しており、南極オゾンホールは最大面積は依然として大きい。とされている
しかし
- 1980年の南極オゾンホールは300万k㎡南極大陸比0.2倍程度であったが、2005年以後の現状では2500-3000万k㎡大陸比2.2倍程度に達している。(1992年には既に2500万k㎡に達していた)
- 1980年の世界のオゾン総量を基準に考えた場合、2005年以後の現状では-3%強と成っている。(1992-2001のピーク時で-6%)
- 「オゾン層観測報告:2007」の図1世界のオゾン全量月平均値の推移、図5南極オゾンホールの最大面積の推移、を見ると有意な変化が著しい。
つまりいまだオゾン総量は少なくオゾンホールは大きいが1980-2001頃まで減少一途拡大一途な状況から停滞若しくは底を打っており事態の悪化傾向は停まっている状況である。
脚注[]
- ↑ Variability of the Antarctic Ozone Hole during the Past Decade as Dictated by the Stratospheric and Tropospheric Meteorology Craig S. Long et al., 14th Conference on Middle Atmosphere, 2007
- ↑ Large decadal scale changes of polar ozone suggest solar influence B.-M. Sinnhuber et al, Atmos. Chem. Phys. Discuss., 5, 12103–12117 (2005)
- ↑ TI: Solar cycle, QBO effect to the stratosphere and troposphere Yousuke Yamashita et al., Eos Trans. AGU, 88(23), Jt. Assem. Suppl., 2007
- ↑ 「環境省・独立行政法人国立環境研究所「成層圏化学気候モデルを用いたオゾンホールの回復予測」について」(大気圏環境研究領域 大気物理研究室)
- ↑ 「経済産業省・独立行政法人新エネルギー・産業技術総合開発機構(NEDO)[NEDO海外レポート NO.913, 2003. 8. 20」」(NEDO ワシントン事務所)
- ↑ 「気象庁[昭和基地上空のオゾン全量が過去最小を記録」(気象庁)
- ↑ 「気象庁[成層圏のオゾンは依然として少ない状態」(気象庁)
関連項目[]
- オゾン
- オゾン層の保護のためのウィーン条約
- オゾン層を破壊する物質に関するモントリオール議定書
- 特定物質の規制等によるオゾン層の保護に関する法律
- 特定製品に係るフロン類の回収及び破壊の実施の確保等に関する法律
外部リンク[]
|
テンプレート:オゾン層破壊
af:Osoonlaag ar:طبقة الأوزون ast:Capa d'ozonu bg:Озонов слой ca:Capa d'ozó cs:Ozónová vrstva cy:Haen osôn da:Ozonlaget eo:Ozona tavolo et:Osoonikiht eu:Ozono geruza fi:Otsonikerros gl:Ozonosfera he:שכבת האוזון hu:Ózonréteg id:Lapisan ozon it:Ozonosfera lt:Ozono sluoksnis mk:Озонска обвивка ml:ഓസോണ് പാളി mr:ओझोनचा पट्टा ms:Lapisan ozon nl:Ozonlaag nn:Ozonlaget no:Ozonlaget oc:Jaç d'ozòn om:Ozone layer pl:Ozonosfera pt:Ozonosfera qu:Achiksamaytu p'istu simple:Ozone layer sv:Ozonlagret th:ชั้นโอโซน tr:Ozonosfer uk:Озоносфера vi:Lớp ôzôn