原子核融合(げんしかくゆうごう、nuclear fusion)とは、軽い核種同士が融合してより重い核種になる反応である。一般には単に核融合と呼ばれることが多い。
原子核同士がある程度接近すると、原子核同士が引き合う力(核力)が反発する力(クーロン力)を超え、2つの原子が融合することになる。融合のタイプによっては融合の結果放出されるエネルギー量が多いことから水素爆弾などの大量破壊兵器に用いられる。また核融合炉のエネルギー利用も研究されている。
原子核分裂に比べて反応の起こる温度・圧力が高いために技術的ハードルが高く、水素爆弾は現在の所は原子爆弾で起爆する必要があり、核融合炉は高温高圧の反応プラズマを封じ込める技術開発が困難を極めている。
なお、具体的な放出エネルギー量や反応を起こさせる方法の詳細については核融合炉も参照のこと。
核融合の種類[]
- 熱核融合 - 超高温により起こる核融合。本項で詳説する。
- 衝突核融合 - 原子核を直接に衝突させて起こす核融合。原子核の研究目的。
- スピン偏極核融合 - 陽子と中性子の自転の角運動量のパラメータ(スピン)を制御する事により核融合反応を制御する。
- ピクノ核融合 - 非常に高密度の星(白色矮星)の内部で起こっていると考えられている核融合反応。電子が原子核のクーロン力を強く遮断して、低温の状態でも零点振動による量子トンネル効果により核融合が起こる。
- ミューオン触媒核融合 - 負ミューオンが原子核の電荷1つ分を核近くまで無効化するので核融合が起こりやすくなる。負ミューオンは消滅までに何度もこの反応に関与できるので触媒のように作用する。
(上記以外に常温核融合という室温で核融合が起こるとされた実験報告がなされたが、厳密な追試では確認されなかったため現在は誤報告として扱われている。)
融合炉・爆弾での反応[]
D-T反応[]
- D + T → 4He + n
核融合反応の中でもっとも反応させやすいのが、重水素(D)と三重水素(トリチウム、T)を用いた反応である。これは過去には水素爆弾に利用され、現在でも、もっとも実現可能性の高い核融合炉の反応に用いられている。
詳しくは核融合炉#D-T反応を参照
恒星での反応[]
恒星などの生み出すエネルギーも、基本的には核融合によるものである。
D-D反応[]
- D + D → T + p
- D + D → 3He + n
収縮しつつある原始星の中心温度が約250万 Kを超えると、初めて核融合が起こる。最初に起こるのは、比較的起こりやすい、2つの重水素(D) が反応する重水素核融合(工学ではD-D反応と呼ぶことも多い)である。重水素核融合を起こした天体を褐色矮星と呼ぶ。
中心の温度が約1,000万Kを超えると(ちなみに太陽の中心は1,500万K)、以下に述べるような水素核融合を起こし、恒星と呼ばれる。
陽子-陽子連鎖反応[]
次の、軽水素(陽子、p)どうしが直接反応する水素核融合を、陽子-陽子連鎖反応、p-pチェインなどと呼ぶ。太陽で主に起こっている核融合反応である。
(1) p + p → 2H + e+ + νe
2つの陽子が融合して、重水素となり陽電子とニュートリノが放出される。
(2) 2H + p → 3He + γ
重水素と陽子が融合してヘリウム3が生成され、ガンマ線としてエネルギーが放出される
(3) 3He + 3He → 4He + p + p
ヘリウム3とヘリウム3が融合してヘリウム4が生成され、陽子が放出される。
CNOサイクル[]
次の、炭素(C)・窒素(N)・酸素(O) を触媒とした水素核融合を、CNOサイクルと呼ぶ。星の中心温度が約2,000万Kを超えると、p-pチェインよりCNOサイクルのほうが優勢になる。
(a-1) 12C+4p → 12C+α
(b-1) 12C+p → 13N
(b-2) 13N+3p → 12C+α
(c-1) 12C+p → 13N
(c-2) 13N+p → 14O
(c-3) 14O+2p → 12C+α
系の温度が高いとa->b->cの順に反応経路が変化し、反応速度が速まるが、基本的には炭素1つ+陽子4つが炭素1つとアルファ線になる反応である。
また、b,cでは13Nや14Oがそれぞれベータ崩壊、ガンマ崩壊する前に次のステップに進む。
ヘリウム燃焼[]
恒星の中心核に充分な量のヘリウムが蓄積された場合に起こる反応。水素原子核の核融合の後に残ったヘリウムは恒星の中心に沈殿し、重力により収縮して中心核の温度が上がる。約1億K程度になると3つのヘリウム原子核がトリプルアルファ反応を起こし、炭素が生成され始める。
- 3 4He → C
ヘリウム中心核からの熱により核の周辺部では水素の核融合が継続する。
炭素より重い元素の燃焼[]
中心温度が15億 Kを超えると、炭素も核融合を始める(炭素燃焼過程)。さらに恒星が十分な質量を持っていれば、ネオン燃焼過程、酸素燃焼過程、ケイ素燃焼過程を経て最も安定した鉄56が作られ、中心での核融合反応は終了する。星は内側から、鉄の核、ケイ素の球殻、酸素の球殻、ネオンの球殻、炭素の球殻、ヘリウムの球殻、水素の最外層からなる、タマネギ状の構造になり、中心以外の各層で核融合が進行する。
超新星爆発[]
中心温度が100億 Kを超えると、吸熱反応である鉄の分解が起こる。それにより恒星は重力崩壊し、超新星爆発を起こす。鉄より重い元素は、超新星爆発のときの核融合で作られる。
核融合炉[]
詳細は「核融合炉」を参照
関連項目[]
- ITER(国際熱核融合実験炉)
- 水素爆弾
- 核融合エネルギー
- 焦電核融合
- フィロ・ファーンズワース フューザー
- フュージョニア
- 宇宙の元素合成
- 恒星進化論
外部リンク[]
テンプレート:核反応
ar:اندماج نووي bg:Термоядрен синтез bs:Fuzija ca:Fusió nuclear cs:Termonukleární fúze da:Fusion el:Πυρηνική σύντηξη eo:Fuzio et:Tuumaühinemine fa:همجوشی هستهای fi:Fuusioreaktio he:היתוך גרעיני hr:Nuklearna fuzija hu:Magfúzió id:Fusi nuklir it:Fusione nucleare lt:Branduolių sąlaja ml:അണുസംയോജനം nl:Kernfusie no:Kjernefysisk fusjon pl:Reakcja termojądrowa pt:Fusão nuclear scn:Fusioni nucliari simple:Nuclear fusion sk:Jadrová syntéza sl:Jedrsko zlivanje sr:Nuklearna fuzija sv:Fusion tr:Füzyon uk:Ядерний синтез vi:Phản ứng tổng hợp hạt nhân zh-min-nan:Hu̍t-chú iông-ha̍p zh-yue:原子核融合